EE 435

Lecture 25

Data Converter Architectures

. · · · · Review from last lecture . · · · ·

Data Converters

Types:

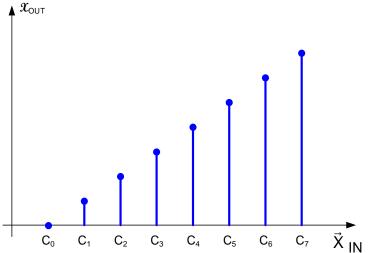
A/D (Analog to Digital)

Converts Analog Input to a Digital Output

D/A (Digital to Analog)

Converts a Digital Input to an Analog Output

A/D is the world's most widely used mixed-signal component


D/A is often included in a FB path of an A/D

A/D and D/A fields will remain hot indefinitely technology advances make data converter design more challenging embedded applications designs often very application dependent

• • • • Review from last lecture .• • • •

D/A Converters \vec{x}_{IN}

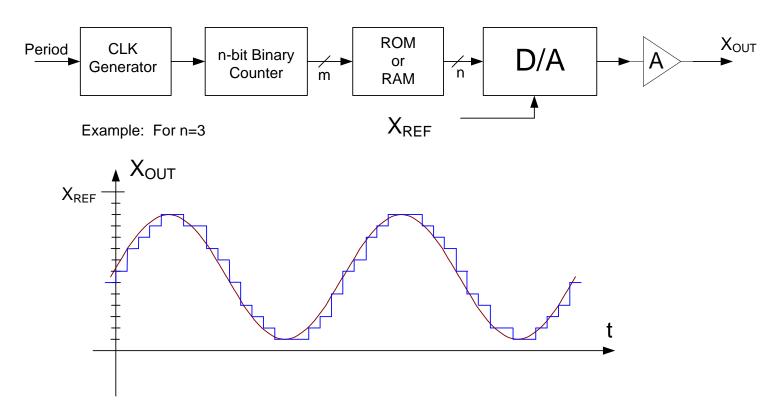
$$\vec{X}$$
 IN n DAC x_{OUT}

For this ideal DAC

$$\mathcal{X}_{OUT} = X_{REF} \left(\frac{b_{n-1}}{2} + \frac{b_{n-2}}{4} + \frac{b_{n-3}}{8} + \dots + \frac{b_1}{2^{n-1}} + \frac{b_0}{2^n} \right)$$

$$\mathcal{X}_{OUT} = X_{REF} \sum_{j=1}^{n} \frac{b_{n-j}}{2^j}$$

- Number of outputs gets very large for n large
- Spacing between outputs is X_{REF}/2ⁿ and gets very small for n large


. • • • • Review from last lecture . • • •

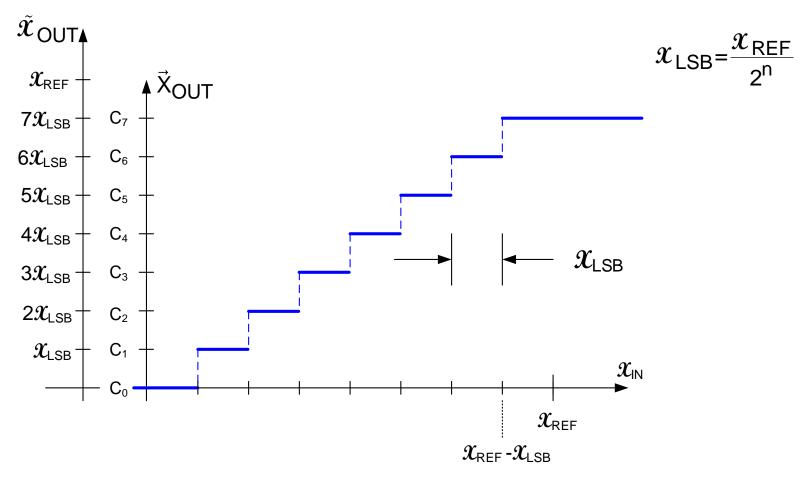
Applications of DACs

- Waveform Generation
- Voltage Generation
- Analog Trim or Calibration
- Industrial Control Systems
- Feedback Element in ADCs
- •

Waveform Generation with DACs

Sine Wave Generator

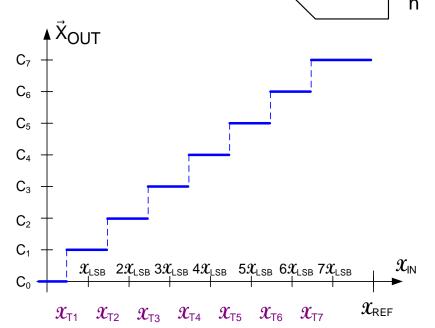
Distortion of the desired waveforms occurs due to both time and amplitude quantization


Often a filter precedes or follows the buffer amplifier to smooth the output waveform

A/D Converters

An Ideal ADC transfer characteristic (3-bits)

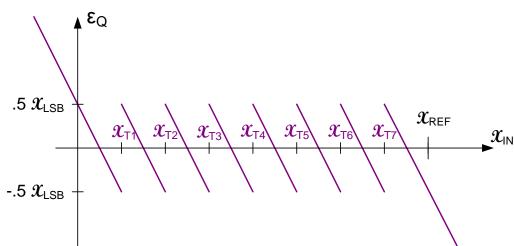
$$\vec{X}_{OUT} = < d_{n-1}, d_{n-2}, ...d_0 >$$


The second vertical axis, labeled $\mathcal{ ilde{X}}_{OUT}$,is the interpreted value of \vec{x}_{OUT}

Review from last lecture. D Converters

Quantization Errors

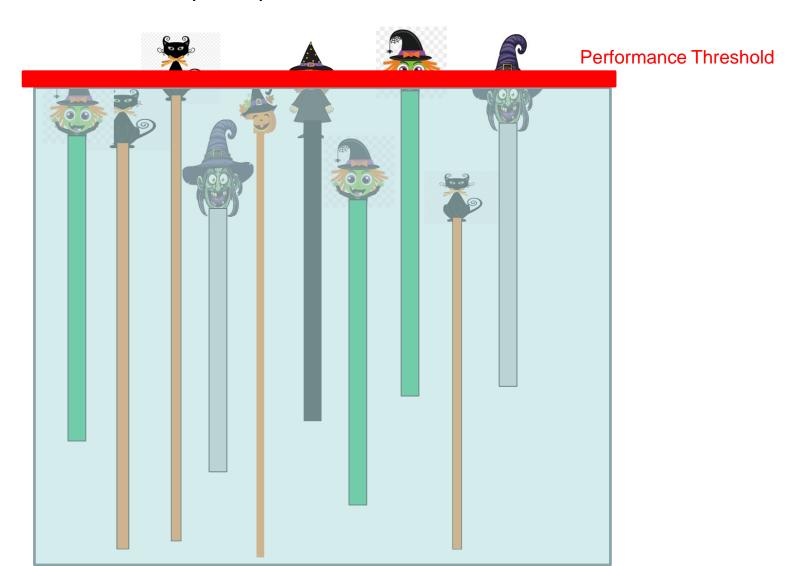
Another Ideal ADC


$$\mathcal{X}_{T1} = \mathcal{X}_{LSB}/2$$

 $\mathcal{X}_{\mathsf{IN}}$

ADC

$$\varepsilon_Q = \tilde{\mathcal{X}}_{\mathsf{OUT}} - \mathcal{X}_{\mathsf{IN}}$$



Magnitude of ϵ_Q bounded by ½ \mathcal{X}_{LSB}

Is the performance of this ideal ADC really better than that of the previous ideal ADC?

Data Converter Design Approach

Ultimately lowering (enhancing) performance threshold makes it difficult to further improve performance

• • • • Review from last lecture .• • • •

Data Converter Architectures

Nyquist Rate

Flash

Charge Redistribution

Pipeline

Two-step and Multi-Step

Interpolating

Algorithmic/Cyclic

Successive Approximation (Register) SAR

Single Slope / Dual Slope

Subranging

Folded

Interleaved

Current Steering

R-string

Charge Redistribution

Algorithmic

R-2R (ladder)

Pipelined

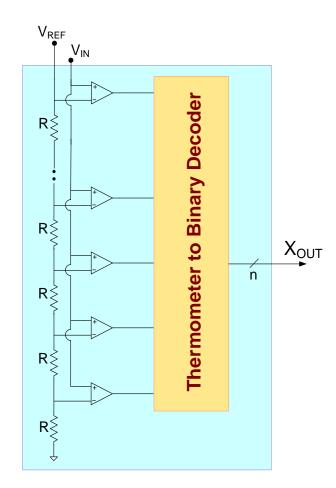
Subranging

Over-Sampled (Delta-Sigma)

Discrete-time
First-order/Higher Order
Continuous-time

Discrete-time

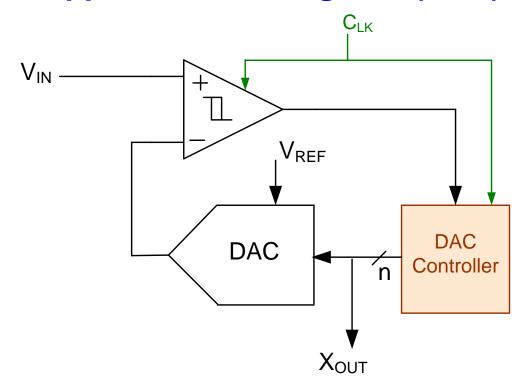
First-order/Higher Order


Continuous-time

. • • • • Review from last lecture . • • • •

Data Converter Architectures

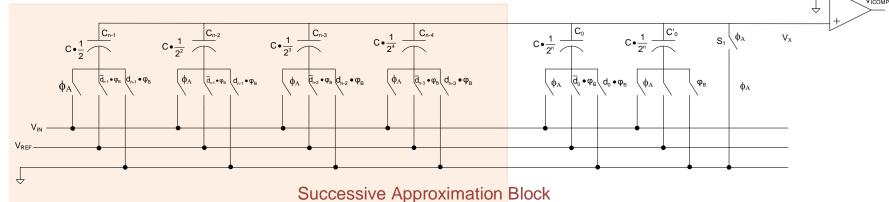
Flash



. • • • • Review from last lecture . • • • •

Data Converter Architectures

Successive Approximation Register (SAR)



. • • • • Review from last lecture . • • • •

Data Converter Architectures

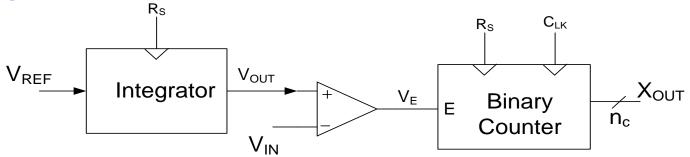
Charge Redistribution

Redistribute charge with switches to drive Vx to 0

$$Q_{SAM} = V_{IN} \left(\sum_{i=0}^{n-1} C_i + \left[C_0 \right] \right) = V_{IN} \left(\sum_{i=0}^{n-1} \frac{C}{2^{n-i}} + \left[\frac{C}{2^n} \right] \right) = V_{IN} C$$

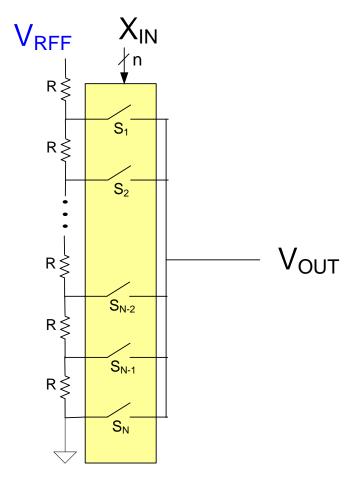
$$Q_{REDIS} = V_{REF} \sum_{i=0}^{n-1} d_i \frac{C}{2^{n-i}}$$

$$Q_{SAM} = Q_{REDIS}$$


$$V_{REF} \sum_{i=0}^{n-1} d_i \frac{C}{2^{n-i}} = V_{IN} C$$

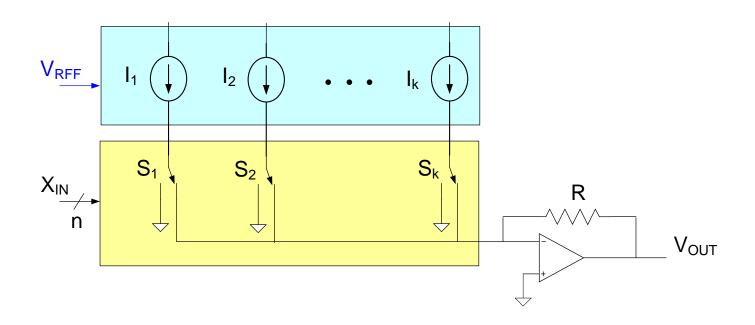
$$V_{IN} = V_{REF} \sum_{i=0}^{n-1} \frac{d_i}{2^{n-i}}$$

Single Slope

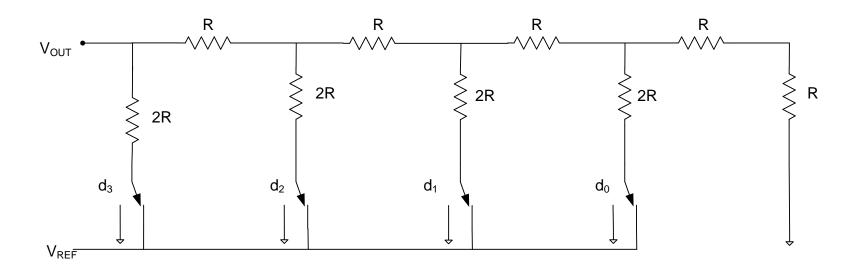

Comparator Changes States when
$$V_{IN} = I_0 \int_0^{t_{TR}} V_{REF} dT = I_0 t_{TR} V_{REF}$$

Counter stops when
$$V_{IN} = t_{TR} V_{REF} I_0 \cong n_{COUNT} T_{CLK} V_{REF} I_0 \longrightarrow n_{COUNT} \cong \frac{V_{IN}}{V_{REF}} \bullet \left(\frac{f_{CLK}}{I_0}\right)$$

$$\text{If calibrate so that} \quad 2^n \cong \left(\frac{f_{\text{CLK}}}{I_0}\right) \quad n_{\text{COUNT}} \cong \frac{V_{\text{IN}}}{V_{\text{REF}}} \bullet 2^n \quad \Longleftrightarrow \quad V_{\text{IN}} \cong \frac{n_{\text{COUNT}}}{2^n} \bullet V_{\text{REF}}$$

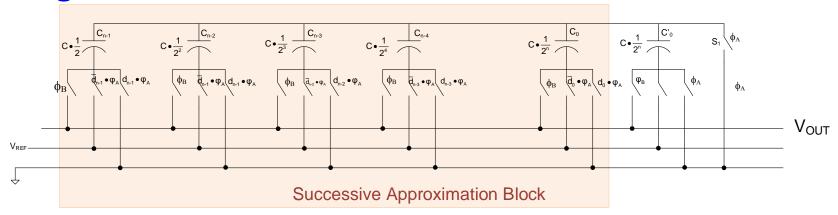

R-String

X_{IN} is decoded to close one switch



Current Steering

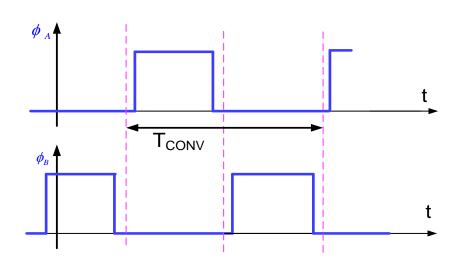
R-2R (4-bits)



By superposition:

$$V_{\text{OUT}} = V_{\text{REF}} d_3 \bullet \frac{1}{2} + V_{\text{REF}} d_2 \bullet \frac{1}{4} + V_{\text{REF}} d_1 \bullet \frac{1}{8} + V_{\text{REF}} d_0 \bullet \frac{1}{16} = V_{\text{REF}} \sum_{k=0}^{3} \frac{d_k}{2^{4-k}} = V_{\text{REF}} \sum_{k=1}^{4} \frac{d_{4-k}}{2^k} = V_{\text{REF}} \sum_{k=1}^{4} \frac{d_{4-k}}{2^$$

Charge Redistribution


$$Q_{SET} = V_{REF} \sum_{i=0}^{n-1} d_i \frac{C}{2^{n-i}}$$

$$Q_{RDIS} = V_{OUT} \left(\sum_{i=0}^{n-1} C_i + \left[C_0 \right] \right) = V_{OUT} \left(\sum_{i=0}^{n-1} \frac{C}{2^{n-i}} + \left[\frac{C}{2^n} \right] \right) = V_{OUT} C$$

$$Q_{SFT} = Q_{RDIS}$$

$$V_{REF} \sum_{i=0}^{n-1} d_i \frac{C}{2^{n-i}} = V_{OUT}C$$

$$V_{OUT} = V_{REF} \sum_{i=0}^{n-1} \frac{d_i}{2^{n-i}}$$

- Many more data converter architectures have been proposed
- Many are some variant of those listed above
- Recall: All typically are perfect if components are ideal
- The major nonideal effects are usually due to one of four issues:
 - Matching performance is not acceptable
 - Speed is limited by parasitics
 - Nonlinearities degrade performance
 - Noise is excessive
- Most data converter design involves sequentially identifying dominant nonideal effect and developing ways to lower it
- Important to observe methods for mitigating nonideal effects as they are often used repeatedly

Performance Characterization of Data Converters

- A very large number of parameters (2ⁿ) characterize the static performance of an ADC!
- And even more parameters needed to characterize the dynamic performance of an ADC
- A large (but much smaller) number of parameters are invariably used to characterize a data converter
- Performance parameters of interest depend strongly on the application
- Very small number of parameters of interest in many/most applications
- "Catalog" data converters are generally intended to satisfy a wide range of applications and thus have much more stringent requirements placed on their performance
- Custom application-specific data converter will generally perform much better than a "catalog" part in the same application

A/D Converters

What types are really used?

Consider catalog parts from one vendor – Analog Devices (Jan 2017)

Flash 2 SAR 233 Pipelined 242 Sigma-Delta 81

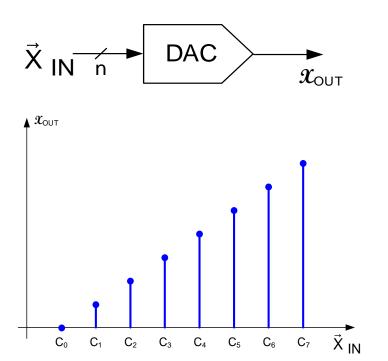
Total 559

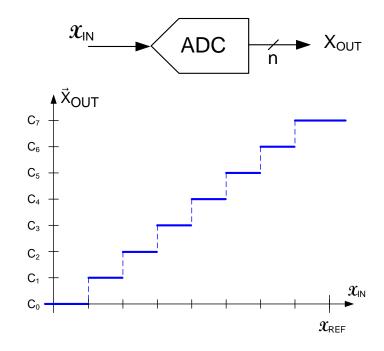
What do ADCs cost?

A/D Converters

Part #	Hardware	ADC \$\frac{1}{4}\$ Resolution (bits)	ADC Output Sample Rate	ADC • H	Architecture	US Price 1000 to 4999 (\$ US)	INL in LSB (typ)) FE	Vin Range (typ) (V p-p)	ADC SNR in dBFS (typ) (dBFS)	Power Dissipation (typ) (W)
	0 Values ▼	16 Values ▼	16.6 - 2.5G	13 Value▼	7 Values S ▼	0.95 - 91	6.5 0.1	- 33.55	0.078 - 40	47 - 107.8	21u - 4.2
AD7492-5	= (12	1.25M	-	SAR	$\overline{}$	**	-	-	-	16.5r
AD7170	Z	12	125	1	Sigma-Delta	\$0	.95	-	-	-	150
AD7478	-	8	1M	1	SAR	\$0	.96	-	5.25	-	17.5m
AD7478A	-	8	1.2M	1	SAR	\$1	.12	-	5.25	-	17.5n
AD7171	% = (16	125	1	Sigma-Delta	\$1	.15	-	-	-	150
AD7999	-	8	140k	4	SAR	\$1	.35	-	5.5	-	4.7m
AD7468	=()	8	320k	1	SAR	\$1	.35	-	3.6	-	570 _k
AD7091	=(12	1M	1	SAR	\$1	.60	-	5.25	-	2.4n
AD7904	=()	8	1M	4	SAR	\$1	.68	-	5.1	-	13.5n
AD7910	=(10	250k	1	SAR	\$1	.77	-	5.25	-	15n
AD7995	% = (10	140k	4	SAR	\$1	.80	-	5.5	-	4.4n
AD7276	=(12	3M	1	SAR	\$1	.85	-	3.6	-	19.8n
AD7908	-	8	1M	8	SAR	\$1	.87	-	5.05	-	13.5n

What do ADCs cost?


A/D Converters


	D-14		1000		100		Ho Diag	. Du		ADO OND . "	
ı	Part #	Hardware	ADC CRESOlution (bits)	ADC Output Sample Rate	ADC • H	Device Architecture	US Price 1000 to 1 4999 (\$ US)	INL in LSB (typ) (LSBs)	Vin ‡ Range (typ) (V p-p)	ADC SNR in dBFS (typ) (dBFS)	Power \$\displays Dissipation (typ) (W)
₽		0 Values▼	16 Values ▼	16.6 - 2.5G	13 Value▼	7 Values S ▼	0.95 - 916.5	0.1 - 33.5	0.078 - 40	47 - 107.8	21u - 4.2
	AD10465	!! ()	14	65M	2	Pipelined	\$916.53		- 4	-	3.5
	ad9625-2600	={ }	12	-	1	Pipelined	\$837.42	1	1.1	58.1	4
	ad9625-2500	= ()	12	2.5G	1	Pipelined	\$735.00	1	1.1	58.3	3.9
	AD9691	-	14	1250M	2	Pipelined	\$692.75	2.6	1.58	63.4	3.8
	AD9680-1250	=	14	1.25G	2	Pipelined	\$692.75	3	1.58	63.6	3.7
	ad9625-2000	= 3	12	2G	1	Pipelined	\$624.75	0.9	1.1	59.5	3.48
	AD9680-1000	= 3	14	1G	2	Pipelined	\$584.38	2.5	1.7	67.2	3.3
	AD9694	:: ()	14	500M	4	Pipelined	\$488.75	1	-	67.1	1.66

Resolution?

3 bits to 24 bits (one at 32 bits)

Real Simple Concepts

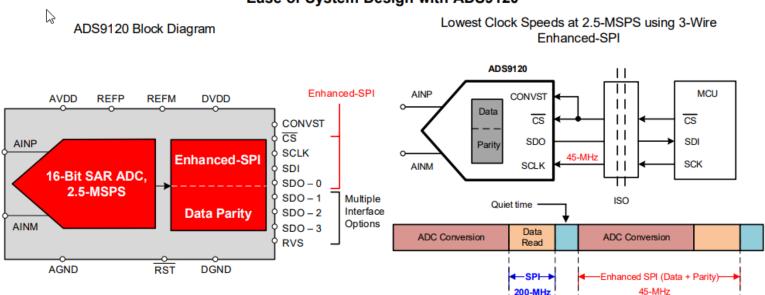
$$x_{OUT} = X_{REF} \sum_{j=1}^{n} \frac{b_{n-j}}{2^{j}}$$

$$\mathcal{X}_{REF} \sum_{j=1}^{n} \frac{\alpha_{n-j}}{2^{j}} = \mathcal{X}_{IN} + \epsilon$$

- Characterizing performance is a tedious task
- Users must be aware of the "quirks" inherent in data converters
- Designers must understand performance requirements

ADS9120

SBAS710A - SEPTEMBER 2016-REVISED JUNE 2017


ADS9120 16-Bit, 2.5-MSPS, 15.5-mW, SAR ADC With Enhanced Performance Features

QTY	UNIT PRICE
1	\$20.48000
10	\$18.82100
25	\$18.04120
100	\$15.11560

1 Features

- · Sample Rate: 2.5 MSPS
- No Latency Output
- · Excellent DC and AC Performance:
 - INL: ±0.25 LSB
 - DNL: ±0.6 LSB
 - SNR: 96 dB, THD: –118 dB
- · Wide Input Range:
 - Unipolar Differential Input Range: ±V_{REF}
 - V_{REF} Input Range: 2.5 V to 5 V, Independent of AVDD
- Low-Power Dissipation:
 - 9 mW at 2.5 MSPS (AVDD Only)
 - 15.5 mW at 2.5 MSPS (Total)
 - Flexible Low-Power Modes Enable Power Scaling with Throughput
- Enhanced-SPI (multiSPI™) Digital Interface
- JESD8-7A-Compliant Digital I/O at 1.8-V DVDD
- Fully-Specified Over Extended Temperature Range: -40°C to +125°C
- Small Footprint: 4-mm × 4-mm VQFN

Ease of System Design with ADS9120

_ 6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
AVDD	Analog supply voltage		1.8		V
DVDD	Digital supply voltage		1.8		V
REFP	Positive reference		5		V

T 6.5 Electrical Characteristics

All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, V_{REF} = 5 V, and f_{DATA} = 2.5 MSPS, unless otherwise noted. All minimum and maximum specifications are for T_A = -40°C to +85°C, unless otherwise noted. All typical values are at T_A = 25°C.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG	SINPUT					
FSR	Full-scale input range (AINP – AINM) ⁽¹⁾		-V _{REF}		V_{REF}	V
V _{IN}	Absolute input voltage (AINP and AINM to REFGND)		-0.1		V _{REF} + 0.1	٧
V _{CM}	Common-mode voltage range (AINP + AINM) / 2		(V _{REF} / 2) – 0.1	V _{REF} / 2	(V _{REF} / 2) + 0.1	V
<u> </u>	Innut conscitones	In sample mode		60		, F
C _{IN}	Input capacitance	In hold mode		4		pF
I _{IL}	Input leakage current			±1		μΑ
VOLTAG	E REFERENCE INPUT					
V _{REF}	Reference input voltage range		2.5		5	V
I _{REF}	Reference input current	Average current, V _{REF} = 5 V, 2-kHz, full-scale input, throughput = 2.5 MSPS		1.3		mA
DC ACC	URACY					
	Resolution			16		Bits
NMC	No missing codes		16			Bits
INII	Internal months control	T _A = -40°C to +85°C	-0.6	±0.25 ⁽²⁾	0.6	LSB ⁽³⁾
INL	Integral nonlinearity	T _A = -40°C to +125°C	-0.7	±0.25 ⁽²⁾	0.7	LSB
DNL	Differential penlineerity	T _A = -40°C to +85°C	-0.6	±0.25 ⁽²⁾	0.6	LSB
DNL	Differential nonlinearity	T _A = -40°C to +125°C	-0.7	±0.25	0.7	LSB
E _(IO)	Input offset error		-1	±0.025 ⁽²⁾	1	mV
dV _{OS} /dT	Input offset thermal drift			1		μV/°C
GE	Gain error		-0.02	±0.01 ⁽²⁾	0.02	%FS
G _E /dT	Gain error thermal drift			0.25		ppm/°C
	Transition noise			0.35		LSB
CMRR	Common-mode rejection ratio	At dc to 20 kHz		80		dB

Electrical Characteristics (continued)

All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, V_{REF} = 5 V, and f_{DATA} = 2.5 MSPS, unless otherwise noted. All minimum and maximum specifications are for T_A = -40°C to +85°C, unless otherwise noted. All typical values are at T_A = 25°C.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
AC ACC	URACY ⁽⁴⁾		•			
		f _{IN} = 2 kHz	94.4	96		
SINAD	Signal-to-noise + distortion	f _{IN} = 100 kHz		95		dB
		f _{IN} = 500 kHz		83.9		
		f _{IN} = 2 kHz	94.5	96		
SNR	Signal-to-noise ratio	f _{IN} = 100 kHz		95.9		dB
		f _{IN} = 500 kHz		84		
		f _{IN} = 2 kHz		-118		
THD	Total harmonic distortion (5)	f _{IN} = 100 kHz		-102		dB
		f _{IN} = 500 kHz		-101		
		f _{IN} = 2 kHz		120		
SFDR	Spurious-free dynamic range	f _{IN} = 100 kHz		108		dB
		f _{IN} = 500 kHz		106		
DIGITAL	. INPUTS (6)					
V _{IH}	High-level input voltage		0.65 DVDD		DVDD + 0.3	V
V _{IL}	Low-level input voltage		-0.3		0.35 DVDD	V
DIGITAL	OUTPUTS (6)		•		•	
VoH	High-level output voltage	I _{OH} = 2-mA source	DVDD - 0.45			٧
V _{OL}	Low-level output voltage	I _{OH} = 2-mA sink			0.45	V
POWER	SUPPLY					
AVDD	Analog supply voltage		1.65	1.8	1.95	V
DVDD	Digital supply voltage		1.65	1.8	1.95	V
		Active, 2.5-MSPS throughput, T _A = -40°C to +85°C		5	6.5	4
IDD	AVDD supply current	Active, 2.5-MSPS throughput, T _A = -40°C to +125°C		5	6.75	mA
100	(AVDD = 1.8 V)	Static, ACQ state		3.7		mA
		Low-power, NAP mode		500		
		Power-down, PD state		1		μA
		Active, 2.5-MSPS throughput, T _A = -40°C to +85°C		9	11.7	14/
PD	AVDD power dissipation	Active, 2.5-MSPS throughput, T _A = -40°C to +125°C		9	12.15	mW
	(AVDD = 1.8 V)	Static, ACQ state		6.6		mW
		Low-power, NAP mode		900		\^/
		Power-down, PD state		1.8		μW
TEMPER	RATURE RANGE	-				
T _A	Operating free-air temperature		-40		125	°C

6.6 Timing Requirements: Conversion Cycle

All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, V_{REF} = 5 V, and f_{DATA} = 2.5 MSPS, unless otherwise noted. All minimum and maximum specifications are for T_A = -40° C to +85°C. All typical values are at T_A = 25°C. See Figure 1.

		MIN	TYP	MAX	UNIT
TIMING REQU	JIREMENTS				
f _{cycle}	Sampling frequency			2.5	MHz
t _{cycle}	ADC cycle time period	400			ns
twh_CONVST	Pulse duration: CONVST high	30			ns
t _{wl_CONVST}	Pulse duration: CONVST low	30			ns
t _{acq}	Acquisition time	100			ns
t _{qt_acq}	Quiet acquisition time ⁽¹⁾	25			ns
t _{d_cnvcap}	Quiet aperture time ⁽¹⁾	10			ns
TIMING SPEC	CIFICATIONS				
t _{conv}	Conversion time	270		290	ns

(1) See Figure 47.

6.7 Timing Requirements: Asynchronous Reset, NAP, and PD

All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, V_{REF} = 5 V, and f_{DATA} = 2.5 MSPS, unless otherwise noted. All minimum and maximum specifications are for T_A = -40°C to +85°C. All typical values are at T_A = 25°C. See Figure 2 and Figure 3.

		MIN	TYP	MAX	UNIT
TIMING REQUI	REMENTS				
t _{wl_RST}	Pulse duration: RST low	100			ns
TIMING SPECI	FICATIONS				
t _{d_rst}	Delay time: RST rising to RVS rising			1250	μs
t _{nap_wkup}	Wake-up time: NAP mode			300	ns
t _{PWRUP}	Power-up time: PD mode			250	μs

6.8 Timing Requirements: SPI-Compatible Serial Interface

All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, $V_{REF} = 5 V$, and $f_{DATA} = 2.5$ MSPS, unless otherwise noted. All minimum and maximum specifications are for $T_A = -40^{\circ}C$ to +85°C. All typical values are at $T_A = 25^{\circ}C$. See Figure 4.

			MIN	TYP MAX	UNIT
TIMING RE	QUIREMENTS				•
f _{CLK}	Serial clock frequency			75	MHz
t _{CLK}	Serial clock time period		13.33		ns
t _{ph_CK}	SCLK high time		0.45	0.55	t _{CLK}
t _{pl_CK}	SCLK low time		0.45	0.55	t _{CLK}
t _{su_CSCK}	Setup time: CS falling to the first S	CLK capture edge	5		ns
t _{su CKDI}	Setup time: SDI data valid to the S	CLK capture edge	1.2		ns
t _{ht_CKDI}	Hold time: SCLK capture edge to (previous) data valid on SDI	0.65		ns
t _{ht_CKCS}	Delay time: last SCLK falling to CS	rising	5		ns
TIMING SPI	ECIFICATIONS				
t _{den_CSDO}	Delay time: CS falling to data enab	le		4.5	i ns
t _{dz CSDO}	Delay time: CS rising to SDO going	g to 3-state		10) ns
t _{d_CKDO}	Delay time: SCLK launch edge to	next) data valid on SDO		6.5	i ns
t _{d_CSRDY_f}	Delay time: CS falling to RVS falling	g			i ns
	Delay time:	After NOP operation		10	
t _{d_CSRDY_r}	CS rising to RVS rising	After WR or RD operation		70	ns

4-Channel, 200 kSPS 12-Bit ADC with Sequencer in 16-Lead TSSOP

Data Sheet

\$2.58 in 1000's

AD7923

FEATURES

Fast throughput rate: 200 kSPS Specified for AV_{DD} of 2.7 V to 5.25 V

Low power

3.6 mW max at 200 kSPS with 3 V supply

7.5 mW max at 200 kSPS with 5 V supply

4 (single-ended) inputs with sequencer

Wide input bandwidth

70 dB Min SNR at 50 kHz input frequency

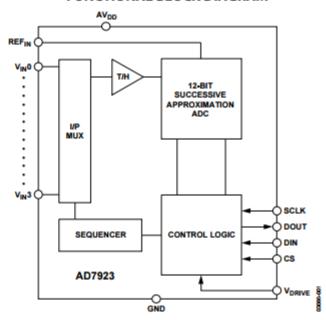
Flexible power/serial clock speed management

No pipeline delays

High speed serial interface SPI°-/QSPI™-/

MICROWIRE™-/DSP-compatible

Shutdown mode: 0.5 µA max


16-lead TSSOP package

Qualified for automotive applications

GENERAL DESCRIPTION

The AD7923 is a 12-bit, high speed, low power, 4-channel, suc-

FUNCTIONAL BLOCK DIAGRAM

SPECIFICATIONS

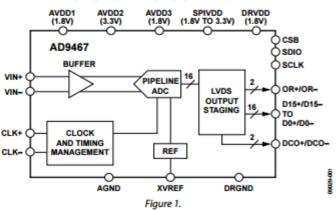
 $AV_{DD} = V_{DRIVE} = 2.7 \text{ V}$ to 5.25 V, $REF_{IN} = 2.5 \text{ V}$, $f_{SCLK} = 20 \text{ MHz}$, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.

Table 1.

Table 1.	nu : 1		T . C 1111 1C .
Parameter	B Version ¹	Unit	Test Conditions/Comments
DYNAMIC PERFORMANCE			$f_{IN} = 50 \text{ kHz}$ sine wave, $f_{SCLK} = 20 \text{ MHz}$
Signal-to-(Noise + Distortion) (SINAD) ²	70	dB min	@ 5 V, =40°C to +85°C
	69	dB min	@ 5 V, 85℃ to 125℃, typ 70 dB
	69	dB min	@ 3 V typ 70 dB, =40°C to +125°C
Signal-to-Noise (SNR) ²	70	dB min	
Total Harmonic Distortion (THD) ²	-77	dB max	@ 5 V typ, -84 dB
	-73	dB max	@ 3 V typ,-77 dB
Peak Harmonic or Spurious Noise	-78	dB max	@ 5 V typ, -86 dB
(SFDR) ²	-76	dB max	@ 3 V typ, -80 dB
Intermodulation Distortion (IMD) ²			f _A = 40.1 kHz, f _B = 41.5 kHz
Second Order Terms	-90	dB typ	
Third Order Terms	-90	dB typ	
Aperture Delay	10	ns typ	
Aperture Jitter	50	ps typ	
Channel-to-Channel Isolation	-85	dB typ	f _{IN} = 400 kHz
Full Power Bandwidth	8.2	MHz typ	@ 3 dB
	1.6	MHz typ	@ 0.1 dB
DC ACCURACY ²			0 511 52
Resolution	12	Rits	
Integral Nonlinearity	±1	LSB max	
Differential Nonlinearity	-0.9/+1.5	LSB max	Guaranteed no missed codes to 12 bits
0 V to REF _{IN} Input Range	-0.9/+1.3	LSB IIIax	Straight binary output coding
Offset Frror	±8	LSB max	Typ ±0.5 LSB
Offset Error Match	±0.5	LSB max	1yp ±0.3 £36
Gain Error	±1.5	LSB max	
Gain Error Match	±0.5	LSB max	
	±0.5	LSB max	-REF _{IN} to +REF _{IN} biased about REF _{IN} with twos
0 V to 2 × REF _{IN} Input Range			complement output coding
Positive Gain Error	±1.5	LSB max	
Positive Gain Error Match	±0.5	LSB max	
Zero-Code Error	±8	LSB max	Typ ±0.8 LSB
Zero-Code Error Match	±0.5	LSB max	1,7,2 = 1.0 = 2.2
Negative Gain Error	±1	LSB max	
Negative Gain Error Match	±0.5	LSB max	
ANALOG INPUT	10.5	LJD III dx	
Input Voltage Range	0 to REF _{IN}	v	Range bit set to 1
input voltage hange	0 to 2 × REF _{IN}	v	Range bit set to 0, $AV_{DD} = 4.75 \text{ V to } 5.25 \text{ V}$
DC Leakage Current	±1	μA max	hange bit set to 0, AVDD = 4.75 V to 5.25 V
Input Capacitance	20		
REFERENCE INPUT	20	pF typ	
	2.5	v	140/
REF _{IN} Input Voltage	2.5	1 *	±1% specified performance
DC Leakage Current	±1	μA max	, 2001 CDC
REF _{IN} Input Impedance	36	kΩ typ	f _{SAMPLE} = 200 kSPS
LOGIC INPUTS			
Input High Voltage, VNH	0.7 × VDRIVE	V min	
Input Low Voltage, VINL	0.3 × VDRIVE	V max	
Input Current, I _{IN}	±1	μA max	Typ 10 nA, V _{IN} = 0 V or V _{DRIVE}
Innut Canacitance C _m ³	10	nF may	I

16-Bit, 200 MSPS/250 MSPS Analog-to-Digital Converter

Data Sheet \$120 in 1000's AD9467


FEATURES

75.5 dBFS SNR to 210 MHz at 250 MSPS 90 dBFS SFDR to 300 MHz at 250 MSPS SFDR at 170 MHz at 250 MSPS 92 dBFS at -1 dBFS 100 dBFS at -2 dBFS 60 fs rms jitter Excellent linearity at 250 MSPS $DNL = \pm 0.5 LSB typical$ INL = ±3.5 LSB typical 2 V p-p to 2.5 V p-p (default) differential full-scale input (programmable) Integrated input buffer External reference support option Clock duty cycle stabilizer Output clock available Serial port control Built-in selectable digital test pattern generation Selectable output data format LVDS outputs (ANSI-644 compatible) 1.8 V and 3.3 V supply operation

APPLICATIONS

Multicarrier, multimode cellular receivers
Antenna array positioning
Power amplifier linearization
Broadband wireless
Radar
Infrared imaging
Communications instrumentation

FUNCTIONAL BLOCK DIAGRAM

A data clock output (DCO) for capturing data on the output is provided for signaling a new output bit.

The internal power-down feature supported via the SPI typically consumes less than 5 mW when disabled.

Optional features allow users to implement various selectable operating conditions, including input range, data format select, and output data test patterns.

The AD9467 is available in a Pb-free, 72-lead, LFCSP specified over the -40°C to +85°C industrial temperature range.

SPECIFICATIONS

AVDD1 = 1.8 V, AVDD2 = 3.3 V, AVDD3 = 1.8 V, DRVDD = 1.8 V, specified maximum sampling rate, 2.5 V p-p differential input, 1.25 V internal reference, AIN = -1.0 dBFS, DCS on, default SPI settings, unless otherwise noted.

Table 1.

Parameter ¹	Temp	Min	Тур	Max	Unit
RESOLUTION		16			Bits
ACCURACY					
No Missing Codes	Full		Guarante	ed	
Offset Error	Full	-200	0	+200	LSB
Gain Error	Full	-3.9	-0.1	+2.6	%FSR
Differential Nonlinearity (DNL) ²	Full	-0.9	±0.5	+1.5	LSB
Integral Nonlinearity (INL) ²	Full	-12	±3.5	+12	LSB
TEMPERATURE DRIFT					
Offset Error	Full		±0.023		%FSR/°C
Gain Error	Full		±0.036		%FSR/°C
ANALOG INPUTS					
Differential Input Voltage Range (Internal VREF = 1 V to 1.25 V)	Full	2	2.5	2.5	V p-p
Common-Mode Voltage	25°C		2.15		V
Differential Input Resistance	25°C		530		Ω
Differential Input Capacitance	25°C		3.5		pF
Full Power Bandwidth	25°C		900		MHz
XVREF INPUT					
Input Voltage	Full	1		1.25	V
Input Capacitance	Full		3		pF
POWER SUPPLY					
AVDD1	Full	1.75	1.8	1.85	V
AVDD2	Full	3.0	3.3	3.6	V
AVDD3	Full	1.7	1.8	1.9	V
DRVDD	Full	1.7	1.8	1.9	V
I _{AVDD1}	Full		567	620	mA
I _{AVDD2}	Full		55	61	mA
l _{AVDD3}	Full		31	35	mA
I _{DRVDD}	Full		40	43	mA
Total Power Dissipation (Including Output Drivers)	Full		1.33	1.5	W
Power-Down Dissipation	Full		4.4	90	mW

¹ See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.

² Measured with a low input frequency, full-scale sine wave, with approximately 5 pF loading on each output bit.

AC SPECIFICATIONS

AVDD1 = 1.8 V, AVDD2 = 3.3 V, AVDD3 = 1.8 V, DRVDD = 1.8 V, specified maximum sampling rate, 2.5 V p-p differential input, 1.25 V internal reference, AIN = -1.0 dBFS, DCS on, default SPI settings, unless otherwise noted.

Table 2.

Table 2.					
Parameter ¹	Temp	Min	Тур	Max	Unit
ANALOG INPUT FULL SCALE		2.5	2/2.5		V p-p
SIGNAL-TO-NOISE RATIO (SNR)					
$f_N = 5 \text{ MHz}$	25°C		74.7/76.4		dBFS
$f_N = 97 \text{ MHz}$	25°C		74.5/76.1		dBFS
f _{IN} = 140 MHz	25°C		74.4/76.0		dBFS
f _N = 170 MHz	25°C	73.7	74.3/75.8		dBFS
	Full	71.5			dBFS
f _{IN} = 210 MHz	25°C		74.0/75.5		dBFS
f _N = 300 MHz	25°C		73.3/74.6		dBFS
SIGNAL-TO-NOISE AND DISTORTION RATIO (SINAD)					
f _N = 5 MHz	25°C		74.6/76.3		dBFS
$f_N = 97 \text{ MHz}$	25°C		74.4/76.0		dBFS
f _N = 140 MHz	25°C		74.4/76.0		dBFS
f _N = 170 MHz	25°C	72.4	74.2/75.8		dBFS
	Full	71.0			dBFS
f _N = 210 MHz	25°C		73.9/75.4		dBFS
f _N = 300 MHz	25°C		73.1/74.4		dBFS
EFFECTIVE NUMBER OF BITS (ENOB)					
fn = 5 MHz	25°C		12.1/12.4		Bits
f _N = 97 MHz	25°C		12.1/12.3		Bits
f _N = 140 MHz	25°C		12.1/12.3		Bits
f _{IN} = 170 MHz	25°C		12.0/12.3		Bits
ig = 170 mile	Full	11.5	12.0/12.3		Bits
$f_{IN} = 210 \text{ MHz}$	25°C		12.0/12.2		Bits
f _{IN} = 300 MHz	25°C		11.9/12.1		Bits
SPURIOUS-FREE DYNAMIC RANGE (SFDR) (INCLUDING SECOND AND THIRD HARMONIC DISTORTION)			,		
fix = 5 MHz	25°C		98/97		dBES
f _N = 97 MHz	25°C		95/93		dBFS
f _{IN} = 140 MHz	25°C		94/95		dBFS
f _N = 170 MHz	25°C	82	93/92		dBFS
IN = 170 MILE	Full	82	33/32		dBF9
f _{IN} = 210 MHz	25°C	02	93/92		dBFS
f _N = 300 MHz	25°C		93/90		dBFS
SFDR (INCLUDING SECOND AND THIRD HARMONIC DISTORTION)	250		33/30		ubi .
fix = 5 MHz at -2 dB Full Scale	25°C		100/100		dBFS
f _N =97 MHz at =2 dB Full Scale	25°C		97/97		dBFS
fin = 140 MHz at = 2 dB Full Scale	25°C		100/95		dBFS
f _N = 170 MHz at -2 dB Full Scale	25°C		100/93		dBFS
f _N = 210 MHz at -2 dB Full Scale	25°C		93/93		dBFS
f _N = 300 MHz at -2 dB Full Scale	25°C		90/90		dBFS
	25 C		90/90		ubr.
WORST OTHER (EXCLUDING SECOND AND THIRD HARMONIC DISTORTION) fin = 5 MHz	2596		00/07		-IDE
$t_N = 5 \text{ MHz}$ $t_N = 97 \text{ MHz}$	25°C		98/97		dBF9
			97/93		dBF5
f _N = 140 MHz	25°C		97/95		dBFS
f _N = 170 MHz	25°C	88	97/93		dBFS
(Full	82			dBFS
f _N = 210 MHz	25°C		97/95		dBFS
$f_{IN} = 300 \text{ MHz}$	25°C	1	97/95		dBFS

SWITCHING SPECIFICATIONS

AVDD1 = 1.8 V, AVDD2 = 3.3 V, AVDD3 = 1.8 V, DRVDD = 1.8 V, specified maximum sampling rate, 2.5 V p-p differential input, 1.25 V internal reference, AIN = -1.0 dBFS, DCS on, default SPI settings, unless otherwise noted.

Table 4.

Parameter ¹	Temp	Min	Тур	Max	Unit
CLOCK ²					
Clock Rate	Full	50		250	MSPS
Clock Pulse Width High (tc+)	Full		2		ns
Clock Pulse Width Low (ta)	Full		2		ns
OUTPUT PARAMETERS ^{2, 3}					
Propagation Delay (tpp)	25°C		3		ns
Rise Time (t _R) (20% to 80%)	25°C		200		ps
Fall Time (t _F) (20% to 80%)	25°C		200		ps
DCO Propagation Delay (tcro)	25°C		3		ns
DCO to Data Delay (t _{sxew})	Full	-200		+200	ps
Wake-Up Time (Power-Down)	Full		100		ms
Pipeline Latency	Full		16		Clock cycles
APERTURE					
Aperture Delay (t _A)	25°C		1.2		ns
Aperture Uncertainty (Jitter)	25°C		60		fs rms
Out-of-Range Recovery Time	25°C		1		Clock cycles

¹ See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.

² Can be adjusted via the SPI interface.

Managements were made using a part coldered to ED.4 material

Designers must understand performance requirements!

Users must be aware of the "quirks" inherent in data converters!

Performance Characterization of Data Converters

Static characteristics

- Resolution
- Least Significant Bit (LSB)
- Offset and Gain Errors
- Absolute Accuracy
- Relative Accuracy
- Integral Nonlinearity (INL)
- Differential Nonlinearity (DNL)
- Monotonicity (DAC)
- Missing Codes (ADC)
- Low-f Spurious Free Dynamic Range (SFDR)
- Low-f Total Harmonic Distortion (THD)
- Effective Number of Bits (ENOB)
- Power Dissipation

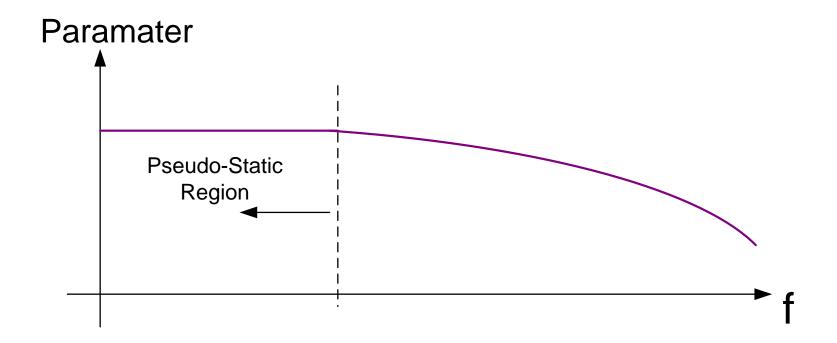
Performance Characterization of Data Converters

- Dynamic characteristics
 - Conversion Time or Conversion Rate (ADC)
 - Settling time or Clock Rate (DAC)
 - Sampling Time Uncertainty (aperture uncertainty or aperture jitter)
 - Dynamic Range
 - Spurious Free Dynamic Range (SFDR)
 - Total Harmonic Distortion (THD)
 - Signal to Noise Ratio (SNR)
 - Signal to Noise and Distortion Ratio (SNDR)
 - Sparkle Characteristics
 - Effective Number of Bits (ENOB)

Dynamic characteristics

- Degradation of dynamic performance parameters often due to nonideal effects in time-domain performance
- Dynamic characteristics of high resolution data converters often challenging to measure, to simulate, to understand source of contributions, and to minimize

Example: An n-bit ADC would often require SFDR at the 6n+6 bit level or better. Thus, considering a 14-bit ADC, the SFDR would be expected to be at the -90dB level or better. If the input to the ADC is a 1V p-p sinusoidal waveform, the second harmonic term would need to be at the $10^{(-90dB/20dB)} = 32\mu\text{V}$ level. A 32uV level is about 1part in 30,000. Signals at this level are difficult to accurately simulate in the presence of a 1V level signal. For example, convergence parameters in simulators and sample (strobe) points used in data acquisition adversely affect simulation results and observing the time domain waveforms that contribute to nonlinearity at this level and relationships between these waveforms and the sources of nonlinearity is often difficult to visualize. Simulation errors that are at the 20dB level or worse can occur if the simulation environment is not correctly established.


Performance Characterization of Data Converters

What is meant by "low frequency"?

Operation at frequencies so low that further decreases in frequency cause no further changes in a parameter of interest

Low frequency operation is often termed Pseudostatic operation

Low-frequency or Pseudo-Static Performance

Performance Characterization of Data Converters

Static characteristics

- Resolution
- Offset and Gain Errors
 - Absolute Accuracy
 - Relative Accuracy
- - Differential Nonlinearity (DNL)
 - Monotonicity (DAC)
 - Missing Codes (ADC)
 - Low-f Spurious Free Dynamic Range (SFDR)
 - Low-f Total Harmonic Distortion (THD)
 - Effective Number of Bits (ENOB)
 - Power Dissipation

Resolution

- Number of distinct analog levels in a DAC
- Number of digital output codes in ADC
- In most cases this is a power of 2
- If a converter can resolve 2ⁿ levels, then we term it an n-bit converter
 - 2ⁿ analog outputs for an n-bit DAC
 - 2ⁿ-1 transition points for an n-bit ADC
- Resolution is often determined by architecture and thus not measured
- Effective resolution can be defined and measured
 - If N_x levels can be resolved for an DAC then

$$n_{EQ} = \frac{\log N_x}{\log 2}$$

If N_x-1 transition points in an ADC, then

$$n_{EQ} = \frac{\log N_x}{\log 2}$$

Least Significant Bit

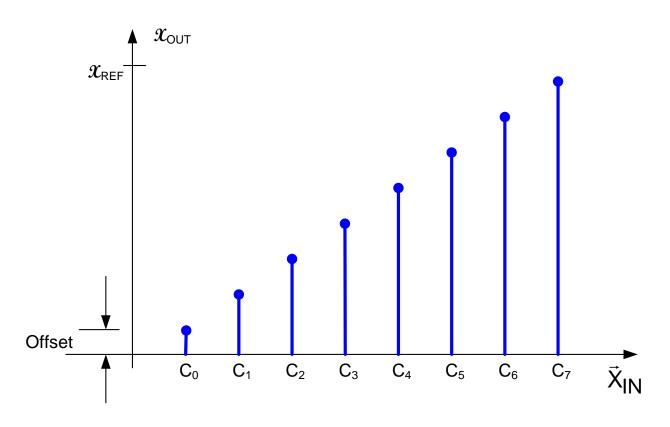
Assume
$$N = 2^{n}$$

Generally <u>Defined</u> by Manufacturer to be $\mathcal{X}_{\text{LSB}} = \mathcal{X}_{\text{REF}} / \mathbb{N}$

Effective Value of LSB can be Measured

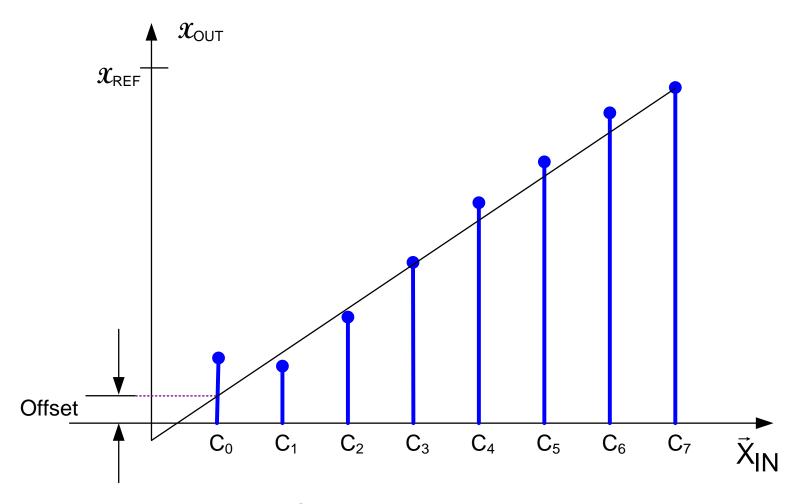
For DAC: \mathcal{X}_{LSB} is equal to the <u>maximum</u> increment in the output for a single bit change in the Boolean input

For ADC: \mathcal{X}_{LSB} is equal to the <u>maximum</u> distance between two adjacent transition points


Offset

For DAC the offset is (assuming 0 is ideal value of $\mathcal{X}_{\text{OUT}}(<0,...0>)$

$$\mathcal{X}_{\text{OUT}}$$
 (<0,...,0>) - absolute $\underline{\mathcal{X}_{\text{OUT}}}$ - in LSB - in LSB


(If ideal value of $\mathcal{X}_{OUT}(<0,...0>) \neq 0$, offset is shift from ideal value at <0,...0>)

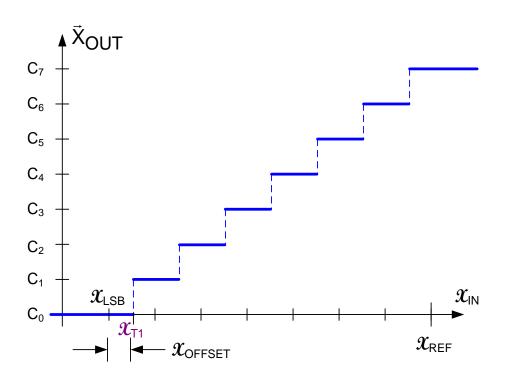
Offset (for DAC)

- Offset strongly (totally) dependent upon performance at a single point
- Probably more useful to define relative to a fit of the data

Offset (for DAC)

Offset relative to fit of data

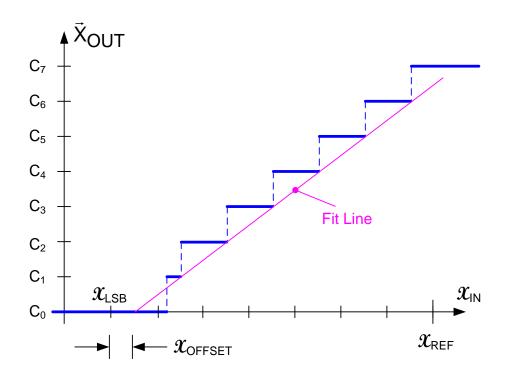
Offset


For ADC the offset is (assuming \mathcal{X}_{LSB} is the ideal first transition point)

$$\begin{array}{c} \mathcal{X}_{\text{T1}} - \mathcal{X}_{\text{LSB}} \\ \hline \mathcal{X}_{\text{LSB}} \\ \hline \mathcal{X}_{\text{LSB}} \\ \hline \\ \mathcal{X}_{\text{LSB}} \\ \hline \\ \mathcal{X}_{\text{LSB}} \\ \hline \\ \mathcal{X}_{\text{OUT}} \\ \hline \\ \mathcal{X}_{\text{OFFSET}} \\ \hline \\ \mathcal{X}_{\text{REF}} \\ \hline \\ - \text{ absolute}$$

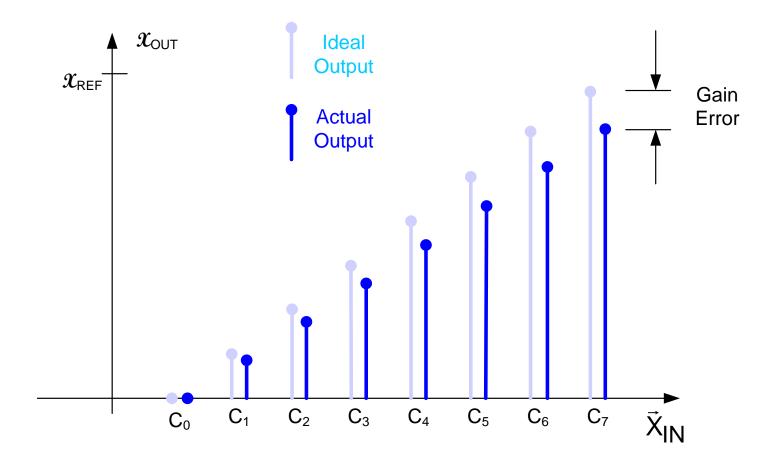
(If ideal first transition point is not \mathcal{X}_{LSB} , offset is shift from ideal)

Offset

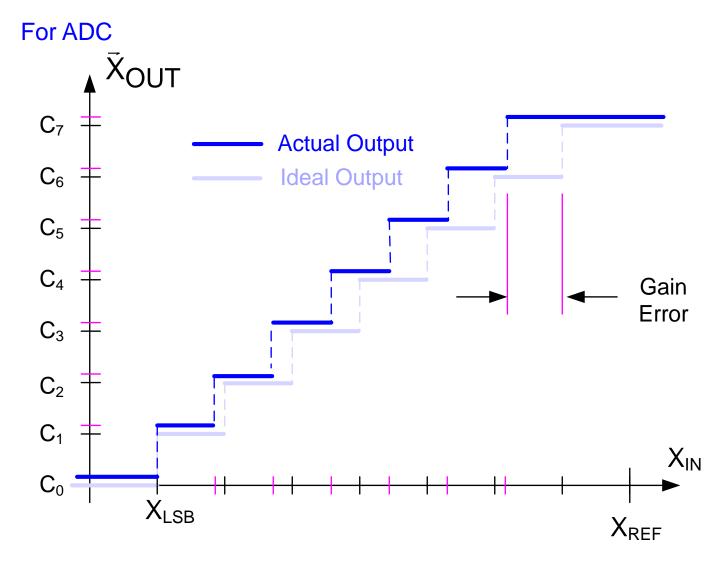

For ADC the offset is

- · Offset strongly (totally) dependent upon performance at a single point
- Probably more useful to define relative to a fit of the data

Offset

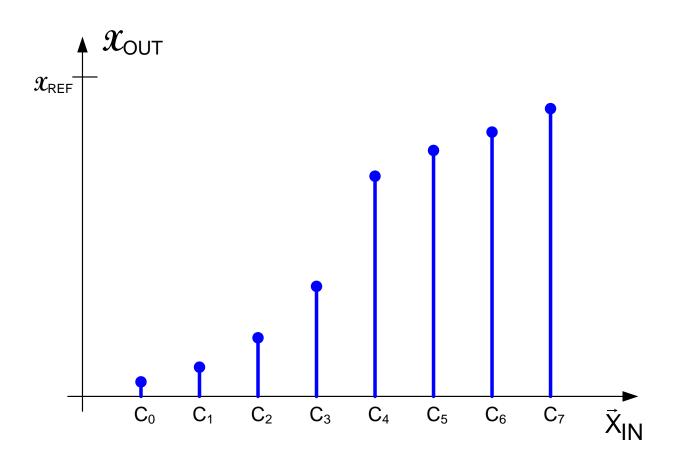

For ADC the offset is

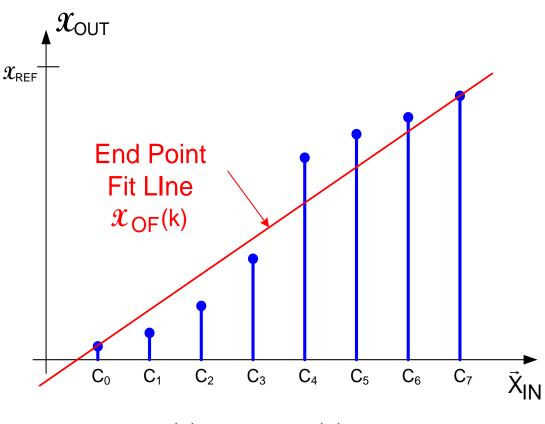
Offset relative to fit of data


Gain and Gain Error

For DAC

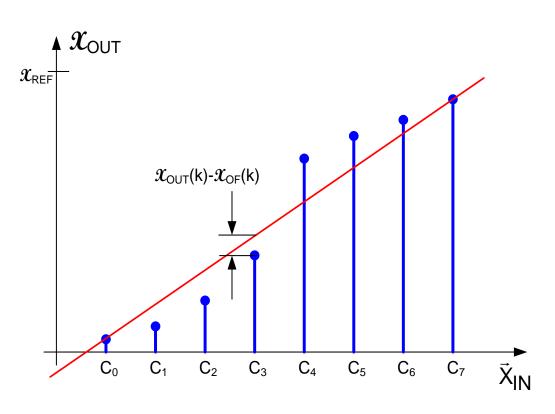
Gain error determined after offset is subtracted from output

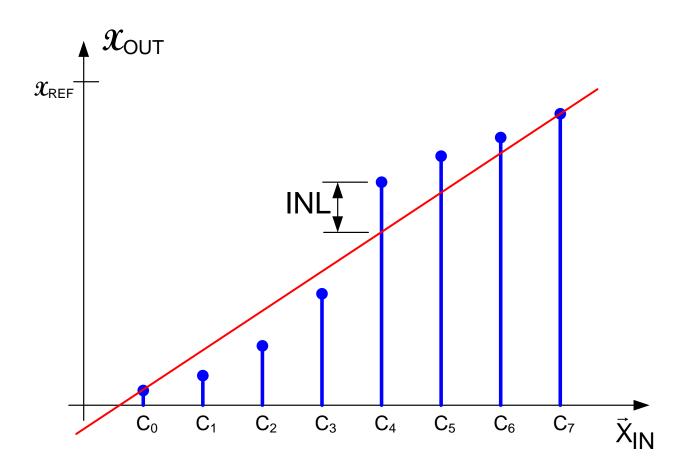

Gain and Gain Error



Gain error determined after offset is subtracted from output

Gain and Offset Errors

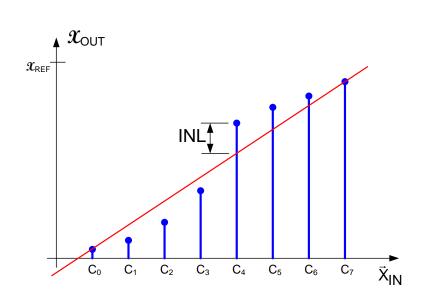

- Fit line would give better indicator of error in gain but less practical to obtain in test
- Gain and Offset errors of little concern in many applications
- Performance characteristic of interest often nearly independent of gain and offset errors
- Can be trimmed in field if gain or offset errors exist.


$$\mathcal{X}_{OF}(k) = mk + \mathcal{X}_{OUT}(0)$$

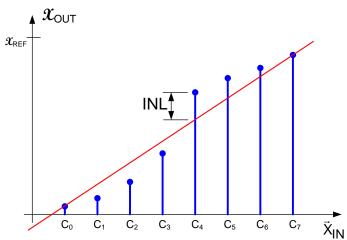
$$m = \frac{\mathcal{X}_{OUT}(N-1) - \mathcal{X}_{OUT}(0)}{N-1}$$

$$INL_{k} = \mathcal{X}_{OUT}(k) - \mathcal{X}_{OF}(k)$$

$$INL = \max_{0 \le k \le N-1} \{ |INL_k| \}$$



Nonideal DAC


INL often expressed in LSB

$$\mathsf{INL}_{\mathsf{k}} = \frac{\mathcal{X}_{\mathsf{OUT}}(\mathsf{k}) \text{-} \mathcal{X}_{\mathsf{OF}}(\mathsf{k})}{\mathcal{X}_{\mathsf{LSB}}}$$

$$INL = \max_{0 \le k \le N-1} \{ |INL_k| \}$$

- INL is often the most important parameter of a DAC
- INL₀ and INL_{N-1} are 0 (by definition)
- There are N-2 elements in the set of INL_k that are of concern
- INL is almost always nominally 0 (i.e. designers try to make it 0)
- INL is a random variable at the design stage
- INL_k is a random variable for 0<k<N-1
- INL_k and INL_{k+j} are almost always correlated for all k,j (not incl 0, N-1)
- Fit Line is a random variable
- INL is the N-2 order statistic of a set of N-2 correlated random variables

- At design stage, INL characterized by standard deviation of the random variable
- Closed-form expressions for INL almost never exist because PDF of order statistics of correlated random variables is extremely complicated
- Simulation of INL very time consuming if n is very large (large sample size required to establish reasonable level of confidence)
 - Model parameters become random variables
 - Process parameters affect multiple model parameters causing model parameter correlation
 - Simulation times can become very large
- INL can be readily measured in laboratory but often dominates test costs because of number of measurements needed when n is large
- Expected value of INL_k at k=(N-1)/2 is largest for many architectures
- Major effort in DAC design is in obtaining acceptable INL yield!

Stay Safe and Stay Healthy!

End of Lecture 25